Add like
Add dislike
Add to saved papers

Stereoselective bioaccumulation, transformation, and toxicity of triadimefon in Scenedesmus obliquus.

Chirality 2017 Februrary
In this study the stereoselective bioaccumulation and transformation of triadimefon and the toxicity of triadimefon and its metabolite triadimenol to the green algae Scenedesmus obliquus were studied. In growth inhibition experiments, triadimenol was more toxic than triadimefon, and (1S,2R)-triadimenol, which has the largest fungicidal activity, presented the highest toxicity to the algae. In bioaccumulation experiments, triadimefon was rapidly taken up by algae cells, and the decrease in the concentration of triadimefon was accompanied by an increase in triadimenol. The transformation of S-(+)- triadimefon was faster than that of the R-(-)-enantiomer, resulting in four triadimenol stereoisomers at different forming rates: B2 (1S, 2S) > B1 (1R, 2R) > A2 (1S, 2R) > A1 (1R, 2S). Thus, it is necessary to explore the enantioselective toxicology and ecological fate of these chiral pesticides in an environmental risk assessment. Also, their metabolites should be paid specific attention to since they may pose higher ecological risks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app