JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

HIC1 and miR-23~27~24 clusters form a double-negative feedback loop in breast cancer.

MicroRNAs (miRNAs) have emerged as a major regulator of the initiation and progression of human cancers, including breast cancer. However, the cooperative effects and transcriptional regulation of multiple miRNAs, especially miRNAs that are present in clusters, remain largely undiscovered. Here we showed that all members of the miR-23~27~24 clusters are upregulated and function as oncogenes in breast cancer and simultaneously target HIC1. Furthermore, we found that HIC1 functions as a transcriptional repressor to negatively control the expression of miR-23~27~24 clusters and forms a double-negative (overall positive) feedback loop. This feedback regulatory pathway is important because overexpression of miR-23~27~24 clusters can remarkably accelerate tumor growth, whereas restoration of HIC1 significantly blocks tumor growth in vivo. A mathematical model was created to quantitatively illustrate the regulatory circuit. Our finding highlights the cooperative effects of miRNAs in a cluster and adds another layer of complexity to the miRNA regulatory network. This study may also provide insight into the molecular mechanisms of breast cancer progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app