Add like
Add dislike
Add to saved papers

Nanoelectromechanical Heat Engine Based on Electron-Electron Interaction.

Physical Review Letters 2016 December 10
We theoretically show that a nanoelectromechanical system can be mechanically actuated by a heat flow through it via an electron-electron interaction. In contrast to most known actuation mechanisms in similar systems, this new mechanism does not involve an electronic current nor external ac fields. Instead, the mechanism relies on deflection-dependent tunneling rates and a heat flow which is mediated by an electron-electron interaction while an electronic current through the device is prohibited by, for instance, a spin-valve effect. Therefore, the system resembles a nanoelectromechanical heat engine. We derive a criterion for the mechanical instability and estimate the amplitude of the resulting self-sustained oscillations. Estimations show that the suggested phenomenon can be studied using available experimental techniques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app