JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Tools of pathway reconstruction and production of economically relevant plant secondary metabolites in recombinant microorganisms.

Plant secondary metabolites exhibit a variety of biological activities and therefore serve as valuable therapeutics or flavoring compounds. However, the small amounts isolated from plants often cannot meet market demands. This led to the exploration of other, more profitable methods for their production, including plant cell culture systems, chemical synthesis and biotechnological production in microbial hosts. The biotechnological production can be pursued by reconstructing metabolic pathways in selected microbial systems. But due to their complexity, most of these pathways are not completely understood and require the expression of a multitude of genes in a foreign organism. Recently, next generation sequencing data and advances in gene silencing in plants allowed the elucidation of some biosynthetic pathways in more detail. Thus, the de novo production of some natural products, including morphine, strictosidine, artemisinin, taxol(®) and resveratrol, in extensively engineered microbial hosts has become feasible. This review highlights the reconstruction of these pathways, missing pieces and novel techniques employed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app