Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

NMR based model of human telomeric repeat G-quadruplex in complex with 2,4,6-triarylpyridine family ligand.

G-quadruplexes (G4) are one of the several different forms of non-canonical DNA structures that can occur in our genome. Their existence is thought to be implicated in important biological functions such as positive and negative transcription regulation or telomeric extension. The human telomeric sequence G4 formed by repetitive nucleotide sequences (T2AG3) at each chromosome end is an important example of intramolecular G4. Knowing the atomic details for different families of ligands targeting G-quadruplex structures hypothetically found in the telomeric repeat it is an important step for rational drug design. Especially if the aim is to prevent or interfere with telomerase extending the 3' end of telomeres. In this study, we report the structure of the complex formed between the telomeric repeat sequence (d[AG3 (T2 AG3 )3 ]) intramolecular G-quadruplex and the 2,4,6-Triarylpyridine compound. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app