Add like
Add dislike
Add to saved papers

Analysis of sheep α-synuclein provides a molecular strategy for the reduction of fibrillation.

Parkinson's disease (PD) presents with neuropathological inclusions called Lewy bodies, which are primarily composed of fibrillar α-synuclein. Recently, we characterized sheep with Gaucher disease and since GBA1 mutations represent the highest genetic risk factor for PD, we have investigated α-synuclein fibrillation in the sheep. Here we demonstrate that differences in six amino acid residues between sheep and human α-synuclein significantly alter in vitro fibril formation. Circular dichroism of recombinant human and sheep α-synuclein show that both proteins adopt the same secondary structure. Fibrils from human and sheep α-synuclein formed at pH7.0 or 4.5 were analyzed by Transmission Electron Microscopy (TEM). Unexpectedly, sheep α-synuclein form fibrils much less readily than human α-synuclein and this difference was more pronounced at the lysosomal pH of 4.5. Aggregation-propensity and intrinsic-solubility analysis revealed that sheep α-synuclein had lower aggregation-propensity and higher solubility. As a result of these observations, TEM was used to analyze fibrils formed at pH4.5 of various "sheep-like" human or "human-like" sheep mutant α-synucleins, together with their wild-type forms. Thioflavin T was used to monitor in situ α-synuclein fibril formation at pH7.0 and 4.5. Results show that "sheep-like" human α-synuclein has substantially lower fibril aggregation, and "human-like" sheep α-synuclein aggregates faster than wild-type forms, respectively. Seeding with WT human α-synuclein showed that "sheep-like" human α-synuclein could not be seeded, providing further evidence that sheep sequence is resistant to fibrillation. These findings provide new avenues to prevent/reduce fibrillation in PD, which may aid in the development of therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app