Add like
Add dislike
Add to saved papers

Propofol-induced mitochondrial and contractile dysfunction of the rat ventricular myocardium.

Physiological Research 2016 December 23
Propofol is a short-acting hypnotic agent used in human medicine for sedation and general anesthesia. Its administration can be associated with serious cardiovascular side-effects that include decrease in arterial blood pressure and cardiac output. The aim of the present study was to evaluate propofol effects on mitochondrial respiration, myocardial contractility and electrophysiology in the same samples isolated from the heart ventricles of adult rats. Mitochondrial oxygen consumption was measured in permeabilized samples dissected from free walls of both ventricles using high-resolution respirometry. State LEAK was determined with malate and glutamate. Active respiration was induced by ADP (state PI) and further by succinate, a Complex II substrate (PI+II). Rotenone was injected to measure state PII. Antimycin A, a Complex III inhibitor was used to determine residual oxygen consumption (ROX). N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride and ascorbate were injected simultaneously for respirometric assay of cytochrome c oxidase activity (CIV). Isometric contractions and membrane potentials were determined on multicellular preparations isolated from right and left ventricles. Propofol concentrations used ranged from 0.005 to 0.5 mmol/l. All respiratory parameters were significantly higher in the left control ventricles compared to the right ones. Propofol significantly decreased Complex I activity at concentration 0.025 mmol/l and papillary muscle contraction force at 0.1 mmol/l. Propofol did not affect action potential duration at any concentration studied. Our study suggests that mechanisms contributing to the impaired myocardial contraction during propofol anesthesia might include also mitochondrial dysfunction manifested by compromised activity of the respiratory Complex I.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app