Add like
Add dislike
Add to saved papers

The analysis of proteins and small molecules based on sterically tunable nucleic acid hyperbranched rolling circle amplification.

In this work, we succeeded in establishing a new method for proteins and small molecules analysis based on the small molecule-linked DNA and nucleic acid hyperbranched rolling circle amplification (HRCA). Small molecule linked DNA by chemical modification was used as a flexible tool to study protein-small molecule interactions. The HRCA reaction which would produce signal amplification was regulated by the steric effect depending on whether the target proteins were present. In the implement of the proposed strategy, streptavidin (SA)-biotin and anti-digoxin antibody (anti-Dig)-digoxin were chosen as two model partners. Experimental results showed that the quantitative detection of SA and anti-Dig was realized both with nanomolar detection limits. The small molecules biotin and digoxin were also detected at nanomolar levels in a wide range of 1nM~100µM and 1nM~10µM, respectively. Meanwhile, the results indicated that the method had a favorable specificity in analyzing proteins or small molecules. Thus, it may be expected to quantitatively analyze some protein markers and small molecular drugs in complex biological samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app