Add like
Add dislike
Add to saved papers

Depot Dependent Effects of Dexamethasone on Gene Expression in Human Omental and Abdominal Subcutaneous Adipose Tissues from Obese Women.

Glucocorticoids promote fat accumulation in visceral compared to subcutaneous depots, but the molecular mechanisms involved remain poorly understood. To identify long-term changes in gene expression that are differentially sensitive or responsive to glucocorticoids in these depots, paired samples of human omental (Om) and abdominal subcutaneous (Abdsc) adipose tissues obtained from obese women during elective surgery were cultured with the glucocorticoid receptor agonist dexamethasone (Dex, 0, 1, 10, 25 and 1000 nM) for 7 days. Dex regulated 32% of the 19,741 genes on the array, while 53% differed by Depot and 2.5% exhibited a Depot*Dex concentration interaction. Gene set enrichment analysis showed Dex regulation of the expected metabolic and inflammatory pathways in both depots. Cluster analysis of the 460 transcripts that exhibited an interaction of Depot and Dex concentration revealed sets of mRNAs for which the responses to Dex differed in magnitude, sensitivity or direction between the two depots as well as mRNAs that responded to Dex only in one depot. These transcripts were also clearly depot different in fresh adipose tissue and are implicated in processes that could affect adipose tissue distribution or functions (e.g. adipogenesis, triacylglycerol synthesis and storage, insulin action). Elucidation of the mechanisms underlying the depot differences in the effect of Dex on the expression of specific genes and pathways that regulate adipose function may offer novel insights into understanding the biology of visceral adipose tissues and their links to metabolic health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app