Add like
Add dislike
Add to saved papers

Modeling of Extended N-H Solids at High Pressures.

The formation of nitrogen-hydrogen networked compounds is a promising approach for obtaining high energy density materials. Multiple experimental reports indicate that the synthesis pressure and temperature of high-energy nitrogen networked compounds significantly decrease when adding hydrogen to nitrogen. One- and two-dimensional structures of nitrogen-hydrogen mixtures are reported to form during synthesis and have also been observed with simulations; however, the structures are not thoroughly established or well understood. Here, we present results of calculations of nitrogen-hydrogen mixtures at pressures up to 50 GPa and predict their structural transformations upon applying and releasing pressure using density functional theory and evolutionary algorithms. Improvements in the computational procedure resulted in efficient on-the-fly elimination of slowly converging structures during the geometry optimization process. This enabled the continuation of long evolution simulations of the nitrogen-hydrogen structures with N/H ratios of 3:1, 4:1, and 9:1 at high pressures (10-50 GPa). New stable crystalline structures with high symmetry and covalent bonds are predicted that have (i) infinite chains and (ii) two-dimensional sheets of nitrogen-hydrogens. The structure with N/H ratio of 4:1 is found to be metallic at 50 GPa. Some crystalline phases stabilized by high pressure may exist as metastable structures with high symmetry and high mass density after lowering the pressure from 50 GPa down to 10 GPa. Vibration modes of calculated Raman and IR spectra are in agreement with published experimental data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app