Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Aminoglycoside Increases Permeability of Osseous Spiral Laminae of Cochlea by Interrupting MMP-2 and MMP-9 Balance.

The spiral ganglion neurons (SGNs) located in the Rosenthal's canal of cochlea are essential target for cochlear implant. Previous studies found that the canaliculi perforantes, small pores on the surface of the osseous spiral lamina (OSL) of the scala tympanic (ST) of cochlea, may provide communication between the cochlear perilymph and SGNs. In this study, we found that chronic treatment of aminoglycosides antibiotics, which is well known to cause sensory cell damage in the cochlea, induced significant damage of bone lining cells on the OSLs and increased the permeability of the Rosenthal's canal. The pores among the bone lining cells became significantly wider after chronic treatment of amikacin (100 mg/kg/day for 3-7 days). Injection of Evans Blue in the ST resulted in significant increase in its migration in the modulus in the amikacin-treated cochlea compared to the control ears, suggesting increased permeability of these passages. Treatment of amikacin with oxytetracycline, an inhibitor of matrix metalloproteases (MMPs), significantly reduced the amount of dye migrated from the ST to the modiolus. These results suggest that amikacin enhanced the permeability between the ST and SGNs by increasing MMPs. Aggregating the permeability of the bone lining cells on the OSLs may benefit gene and stem cell delivery to the SGNs in the cochlea.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app