Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Fermentation of glycerol by Anaerobium acetethylicum and its potential use in biofuel production.

Growth of biodiesel industries resulted in increased coproduction of crude glycerol which is therefore becoming a waste product instead of a valuable 'coproduct'. Glycerol can be used for the production of valuable chemicals, e.g. biofuels, to reduce glycerol waste disposal. In this study, a novel bacterial strain is described which converts glycerol mainly to ethanol and hydrogen with very little amounts of acetate, formate and 1,2-propanediol as coproducts. The bacterium offers certain advantages over previously studied glycerol-fermenting microorganisms. Anaerobium acetethylicum during growth with glycerol produces very little side products and grows in the presence of maximum glycerol concentrations up to 1500 mM and in the complete absence of complex organic supplements such as yeast extract or tryptone. The highest observed growth rate of 0.116 h-1 is similar to that of other glycerol degraders, and the maximum concentration of ethanol that can be tolerated was found to be about 60 mM (2.8 g l-1 ) and further growth was likely inhibited due to ethanol toxicity. Proteome analysis as well as enzyme assays performed in cell-free extracts demonstrated that glycerol is degraded via glyceraldehyde-3-phosphate, which is further metabolized through the lower part of glycolysis leading to formation of mainly ethanol and hydrogen. In conclusion, fermentation of glycerol to ethanol and hydrogen by this bacterium represents a remarkable option to add value to the biodiesel industries by utilization of surplus glycerol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app