Add like
Add dislike
Add to saved papers

Property Self-Optimization During Wear of MoS 2 .

Knowledge of their bulk physical properties often guides selection of appropriate tribological coating materials. However, these properties as well as the microstructure evolve dramatically under the extreme conditions imposed during mechanical wear. The dynamic response ultimately governs the material's wear performance; thus, understanding the dynamic evolution of the system is critical. This work characterizes the change in mechanical properties and microstructure as a function of wear cycles in model MoS2 films using a combination of nanowear testing, transmission electron microscopy, and site-specific nanopillar compression. Notably, mechanical wear enhances the mechanical properties of the MoS2 while simultaneously evolving a microstructure that reduces the coefficient of friction and wear rate. We hypothesize that this self-optimizing behavior underpins the exceptional lubricity and antiwear performance of MoS2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app