Add like
Add dislike
Add to saved papers

Deregulated ALG-2/HEBP2 axis alters microtubule dynamics and mitotic spindle behavior to stimulate cancer development.

Cancer cells are characterized by genomic instability, resulting in the accumulation of mutations that promote cancer progression. One way that genomic instability can arise is through improper regulation of the microtubule cytoskeleton that impacts the function of the mitotic spindle. In this study, we have identified a critical role for the interaction between apoptosis-linked gene 2 (ALG-2) and heme-binding protein 2 (HEBP2) in the above processes. Our data show that the gene copy numbers and mRNA levels for both ALG-2 and HEBP2 are significantly upregulated in breast and lung cancer. Coexpression of ALG-2 and HEBP2 markedly increases the cytoplasmic pool of ALG-2 and alters the subcellular distribution of HEBP2. Our data further reveal that abnormality in the ALG-2/HEBP2 interaction impairs spindle orientation and positioning during mitosis. In addition, this complex appears to modulate the dynamic properties of microtubules in cancer cells. These finding thus uncover an important function for deregulated ALG-2/HEBP2 axis in cancer development by influencing microtubule dynamics and spindle behavior, providing novel insight into the etiology and pathogenesis of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app