Add like
Add dislike
Add to saved papers

Atmospheric implication of the hydrogen bonding interaction in hydrated clusters of HONO and dimethylamine in the nighttime.

In this study, the stability of clusters formed by the trans- and cis-isomers of nitrous acid (HONO) with dimethylamine (DMA) and water has been characterized by density functional theory. The large red shifts of the OH-stretching transitions of both HONO isomers in the clusters indicate the formation of strong hydrogen bonds. At standard temperature and pressure, H2O (acceptor) binds to HONO (donor) with binding energies of -25.0 to -24.6 kJ mol(-1), less stable than those of DMA (acceptor) with HONO (donor) (-50.5 to -45.3 kJ mol(-1)). Our findings indicate that hydration enhances proton transfer from HONO to DMA, and consequently increases the interaction strength (binding energies = -67.8 to -78.6 kJ mol(-1)). The topological and generalized Kohn-Sham energy decomposition confirms strong hydrogen bond interactions. The clustering of HONO with DMA in the atmosphere is negligible as compared to the important H2SO4-DMA clusters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app