Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Recycler: an algorithm for detecting plasmids from de novo assembly graphs.

Bioinformatics 2017 Februrary 16
Motivation: Plasmids and other mobile elements are central contributors to microbial evolution and genome innovation. Recently, they have been found to have important roles in antibiotic resistance and in affecting production of metabolites used in industrial and agricultural applications. However, their characterization through deep sequencing remains challenging, in spite of rapid drops in cost and throughput increases for sequencing. Here, we attempt to ameliorate this situation by introducing a new circular element assembly algorithm, leveraging assembly graphs provided by a conventional de novo assembler and alignments of paired-end reads to assemble cyclic sequences likely to be plasmids, phages and other circular elements.

Results: We introduce Recycler, the first tool that can extract complete circular contigs from sequence data of isolate microbial genomes, plasmidome and metagenome sequence data. We show that Recycler greatly increases the number of true plasmids recovered relative to other approaches while remaining highly accurate. We demonstrate this trend via simulations of plasmidomes, comparisons of predictions with reference data for isolate samples, and assessments of annotation accuracy on metagenome data. In addition, we provide validation by DNA amplification of 77 plasmids predicted by Recycler from the different sequenced samples in which Recycler showed mean accuracy of 89% across all data types-isolate, microbiome and plasmidome.

Availability and Implementation: Recycler is available at https://github.com/Shamir-Lab/Recycler.

Contact: [email protected].

Supplementary information: Supplementary data are available at Bioinformatics online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app