JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Ligand-Dissociation-Involved Mechanism in Amide Formation of Monofluoroacylboronates with Hydroxylamines.

Acylborons, as a growing class of boron reagents, were successfully applied to amide ligation and showed potential in chemoselective bioconjugation reactions in recent years. In this manuscript, a density functional theory (DFT) study was performed to investigate the mechanism of the amide formation between monofluoroacylboronates and hydroxylamines. An updated pathway was clarified herein, including water-assisted hemiaminal formation, pyridine ligand dissociation, elimination via a six-membered-ring transition state, and water-assisted tautomerization. The proposed mechanism was further examined by applying it to investigate the activation barriers of other monofluoroacylboronates, and the related calculations well reproduced the experimentally reported relative reactivities. On the basis of these results, we found that the ortho substitution of the pyridine ligand destabilizes the acylboron substrates and the hemiaminal intermediates by steric effects and thus lowers the energy demand of the ligand dissociation and elimination steps. By contrast, the para substitution of the pyridine ligand with an electron-donating group enhances the coordination of the ligand by electronic effects, which is a disadvantage to the ligand dissociation and elimination steps. The ligand bearing a rigid linkage blocks the rotation of the pyridine ligand and makes ligand dissociation difficult.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app