Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Treatment of Sepsis Pathogenesis with High Mobility Group Box Protein 1-Regulating Anti-inflammatory Agents.

Sepsis is one of the major causes of death worldwide when associated with multiple organ failure. However, there is a critical lack of adequate sepsis therapies because of its diverse patterns of pathogenesis. The pro-inflammatory cytokine cascade mediates sepsis pathogenesis, and high mobility group box proteins (HMGBs) play an important role as late-stage cytokines. We previously reported the small-molecule modulator, inflachromene (1d), which inhibits the release of HMGBs and, thereby, reduces the production of pro-inflammatory cytokines. In this context, we intraperitoneally administered 1d to a cecal ligation and puncture (CLP)-induced mouse model of sepsis and confirmed that it successfully ameliorated sepsis pathogenesis. On the basis of a structure-activity relationship study, we discovered new candidate compounds, 2j and 2l, with improved therapeutic efficacy in vivo. Therefore, our study clearly demonstrates that the regulation of HMGB1 release using small molecules is a promising strategy for the treatment of sepsis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app