Add like
Add dislike
Add to saved papers

Prolyl 4-Hydroxylase: Substrate Isosteres in Which an (E)- or (Z)-Alkene Replaces the Prolyl Peptide Bond.

Biochemistry 2017 January 11
Collagen prolyl 4-hydroxylases (CP4Hs) catalyze a prevalent posttranslational modification, the hydroxylation of (2S)-proline residues in protocollagen strands. The ensuing (2S,4R)-4-hydroxyproline residues are necessary for the conformational stability of the collagen triple helix. Prolyl peptide bonds isomerize between cis and trans isomers, and the preference of the enzyme is unknown. We synthesized alkene isosteres of the cis and trans isomers to probe the conformational preferences of human CP4H1. We discovered that the presence of a prolyl peptide bond is necessary for catalysis. The cis isostere is, however, an inhibitor with a potency greater than that of the trans isostere, suggesting that the cis conformation of a prolyl peptide bond is recognized preferentially. Comparative studies with a Chlamydomonas reinhardtii P4H, which has a similar catalytic domain but lacks an N-terminal substrate-binding domain, showed a similar preference for the cis isostere. These findings support the hypothesis that the catalytic domain of CP4Hs recognizes the cis conformation of the prolyl peptide bond and inform the use of alkenes as isosteres for peptide bonds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app