Add like
Add dislike
Add to saved papers

First Example of Nonlinear Optical Materials Based on Nanoconjugates of Sandwich Phthalocyanines with Quantum Dots.

We report original, selective, and efficient approaches to novel nonlinear optical (NLO) materials, namely homoleptic double- and triple-decker europium(III) complexes 2 and 3 with the A3 B-type phthalocyanine ligand (2,3-bis[2'-(2''-hydroxyethoxy)ethoxy]-9,10,16,17,23,24-hexa-n-butoxyphthalocyanine 1) bearing two anchoring diethyleneglycol chains terminated with OH groups. Their covalently linked nanoconjugates with mercaptosuccinic acid-capped ternary CdSeTe/CdTeS/ZnSeS quantum dots are prepared in the presence of an ethyl(dimethylaminopropyl)carbodiimide activating agent. Optical limiting (OL) properties of the obtained low-symmetry complexes and their conjugates with quantum dots (QDs) are measured for the first time by the open-aperture Z-scan technique (532 nm laser and pulse rate of 10 ns). For comparison, symmetrical double- and triple-decker EuIII octa-n-butoxyphthalocyaninates 5 and 6 and their mixtures with trioctylphosphine oxide-capped QDs are also synthesized and studied. It is revealed that both lowering of molecular symmetry and expansion of the π-electron system upon moving from double- to triple-decker complexes significantly improves the OL characteristics, making the low-symmetry triple-decker complex 3 the most efficient optical limiter in the studied family of sandwich complexes, affording 50 % lowering of light transmittance below 0.5 J cm-2 input fluence. Conjugation (both covalent and noncovalent) with QDs affords further enhancement of the OL properties of both double- and triple-decker complexes. Altogether, the obtained results contribute to the development of novel nonlinear optical materials for future nanoelectronic and optical device applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app