Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier.

Lab on a Chip 2017 January 32
The neurovascular unit is a complex, interdependent system composed of neurons and neural supporting cells, such as astrocytes, as well as cells that comprise the vascular system including endothelial cells, pericytes, and smooth muscle cells. Each cell type in the neurovascular unit plays an essential role, either in transmitting and processing neural signals or in maintaining the appropriate microenvironmental conditions for healthy neural function. In vitro neurovascular models can be useful for understanding the different roles and functions of the cells composing the neurovascular unit, as well as for assessing the effects on neural function of therapeutic compounds after crossing the endothelial barrier. Here, we report a novel three-dimensional neurovascular microfluidic model consisting of primary rat astrocytes and neurons together with human cerebral microvascular endothelial cells. These three cell types in our neurovascular chip (NVC) show distinct cell type-specific morphological characteristics and functional properties. In particular, morphological and functional analysis of neurons enables quantitative assessment of neuronal responses, while human cerebral endothelial cells form monolayers with size-selective permeability similar to existing in vitro blood-brain barrier (BBB) models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app