Add like
Add dislike
Add to saved papers

Sustainable Electronic Materials: Reversible Phototuning of Conductance in a Noncovalent Assembly of MWCNT and Bioresource-Derived Photochromic Molecule.

Tuning the microstructure, conductance, band gap of a single molecule with an external stimuli such as light have vital importance in nanoscale molecular electronics. Azobenzene systems are inimitable light responsive molecules suitable for the development of optically modulated materials. In this work we have demonstrated the development of an optically active Multiwalled Carbon Nanotube (MWCNT)-hybrid material by the noncovalent functionalization of azo based chromophore derived from cardanol, a bioresource material. This photoresponsive noncovalent hybrid shows trans-cis photoisomerization induced switching of conductance. We report this as the first example in which the photochromic assembly developed from a bioresource material exhibited tunable conductivity. We expect that this novel photoswitchable hybrid with reversible conductance may have potential applications in nanoscale molecular electronics, solar cells, OLEDs, etc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app