Add like
Add dislike
Add to saved papers

Induced core-shell structure and the electric properties of (K 0.48 Na 0.52 ) 0.95 Li 0.05 Nb 0.95 Sb 0.05 O 3 ceramics.

The relationship among dielectric anomaly, ferroelectric response, defects, and microstructures was established for (K0.48(1+x) Na0.52 )0.95 Li0.05 Nb0.95 Sb0.05 O3 (x = 0.04, 0.00, -0.02, -0.04 and -0.08) ceramics. For x = -0.02 and -0.04, larger coercive fields and lower remnant polarizations were obtained; besides, an additional dielectric relaxation behavior was observed with the activation energy Ea being about 2.19 eV and 1.92 eV, respectively. Furthermore, the grain and grain boundary contributions to the capacitance were separated using impedance spectroscopy, which, combined with back-scattering characterization, firmly indicates the core-shell structure of K-deficient samples (x = -0.02 and -0.04). Unlike the cores, the shells possess a large amount of K+ vacancies (). This work paves a way for regulating the fine structure and more on the electrical properties of KNN-based materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app