Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Structural basis of the substrate preference towards CMP for a thymidylate synthase MilA involved in mildiomycin biosynthesis.

Scientific Reports 2016 December 22
Modified pyrimidine monophosphates such as methyl dCMP (mdCMP), hydroxymethyl dUMP (hmdUMP) and hmdCMP in some phages are synthesized by a large group of enzymes termed as thymidylate synthases (TS). Thymidylate is a nucleotide required for DNA synthesis and thus TS is an important drug target. In the biosynthetic pathway of the nucleoside fungicide mildiomycin isolated from Streptomyces rimofaciens ZJU5119, a cytidylate (CMP) hydroxymethylase, MilA, catalyzes the conversion of CMP into 5'-hydroxymethyl CMP (hmCMP) with an efficiency (kcat /KM ) of 5-fold faster than for deoxycytidylate (dCMP). MilA is thus the first enzyme of the TS superfamily preferring CMP to dCMP. Here, we determined the crystal structures of MilA and its complexes with various substrates including CMP, dCMP and hmCMP. Comparing these structures to those of dCMP hydroxymethylase (CH) from T4 phage and TS from Escherichia coli revealed that two residues in the active site of CH and TS, a serine and an arginine, are respectively replaced by an alanine and a lysine, Ala176 and Lys133, in MilA. Mutation of A176S/K133R of MilA resulted in a reversal of substrate preference from CMP to dCMP. This is the first study reporting the evolution of the conserved TS in substrate selection from DNA metabolism to secondary nucleoside biosynthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app