JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Robust fractional quantum Hall effect in the N=2 Landau level in bilayer graphene.

Nature Communications 2016 December 22
The fractional quantum Hall effect is a canonical example of electron-electron interactions producing new ground states in many-body systems. Most fractional quantum Hall studies have focussed on the lowest Landau level, whose fractional states are successfully explained by the composite fermion model. In the widely studied GaAs-based system, the composite fermion picture is thought to become unstable for the N≥2 Landau level, where competing many-body phases have been observed. Here we report magneto-resistance measurements of fractional quantum Hall states in the N=2 Landau level (filling factors 4<|ν|<8) in bilayer graphene. In contrast with recent observations of particle-hole asymmetry in the N=0/N=1 Landau levels of bilayer graphene, the fractional quantum Hall states we observe in the N=2 Landau level obey particle-hole symmetry within the fully symmetry-broken Landau level. Possible alternative ground states other than the composite fermions are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app