Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The Mechanism of p53 Rescue by SUSP4.

Angewandte Chemie 2017 January 25
p53 is an important tumor-suppressor protein deactivation of which by mdm2 results in cancers. A SUMO-specific protease 4 (SUSP4) was shown to rescue p53 from mdm2-mediated deactivation, but the mechanism is unknown. The discovery by NMR spectroscopy of a "p53 rescue motif" in SUSP4 that disrupts p53-mdm2 binding is presented. This 29-residue motif is pre-populated with two transient helices connected by a hydrophobic linker. The helix at the C-terminus binds to the well-known p53-binding pocket in mdm2 whereas the N-terminal helix serves as an affinity enhancer. The hydrophobic linker binds to a previously unidentified hydrophobic crevice in mdm2. Overall, SUSP4 appears to use two synergizing modules, the p53 rescue motif described here and a globular-structured SUMO-binding catalytic domain, to stabilize p53. A p53 rescue motif peptide exhibits an anti-tumor activity in cancer cell lines expressing wild-type p53. A pre-structures motif in the intrinsically disordered proteins is thus important for target recognition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app