Add like
Add dislike
Add to saved papers

Comparative metabolic state of microflora on the surface of the anode electrode in a microbial fuel cell operated at different pH conditions.

AMB Express 2016 December
The metabolic state of microflora (mixed microbial cultures) in microbial fuel cells (MFCs) is currently unclear. Metabolomic analyses were conducted of microflora growing on the anodic electrodes of MFCs operated at pH 7.0, 5.5, or 4.0 and utilizing starch as the major carbon substrate. A much higher current was produced at pH 7.0 than at pH 5.5 and 4.0, correlating with an increased population ratio of Geobacter species to the total bacteria growing on the electrode. Most intracellular metabolites related to the tricarboxylic acid (TCA) cycle were present at a higher level at pH 7.0 than at pH 5.5 and 4.0, and the levels of metabolites correlated well with the obtained current densities. A high intracellular adenosine triphosphate (ATP)/adenosine diphosphate (ADP) ratio at pH 7.0, compared to at pH 5.5 and 4.0, likewise supported current production. Overall, the metabolomic analyses demonstrated that activation of the TCA cycle and increased ATP generation are critical parameters for electricity generation by microflora.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app