Add like
Add dislike
Add to saved papers

Aldehyde reduction in a novel pericardial tissue reduces calcification using rabbit intramuscular model.

Calcification is a major factor that limits the durability of bioprosthetic valve. A novel bovine pericardial tissue treated with aldehyde capping chemistry and glycerolization was evaluated for its resistance to calcification in comparison with porcine tissues treated with amino oleic acid and bovine pericardial tissue with ethanol rinsing in a rabbit intramuscular model. Tissue discs from the test and control tissues were implanted in rabbits for 60 days. The explanted discs were subject to X-ray imaging, calcium quantification and histology analysis. The test tissue showed 95 and 96 % reduction in calcification in comparison with amino oleic acid treatment and ethanol rinsing treatment, respectively. In addition, the test tissue showed the least inflammatory response as evidenced by a reduced amount of macrophages and giant cells in histology analysis. Furthermore, the aldehyde analysis of the pre-implanted samples showed associated reduction in free aldehyde levels with the test tissue. The reduction in calcification is consistent with previously reported results and is hypothesized to be attributed to the capping of free aldehydes in the test tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app