Add like
Add dislike
Add to saved papers

A Sparsity-Constrained Preconditioned Kaczmarz Reconstruction Method for Fluorescence Molecular Tomography.

Fluorescence molecular tomography (FMT) is an imaging technique that can localize and quantify fluorescent markers to resolve biological processes at molecular and cellular levels. Owing to a limited number of measurements and a large number of unknowns as well as the diffusive transport of photons in biological tissues, the inverse problem in FMT is usually highly ill-posed. In this work, a sparsity-constrained preconditioned Kaczmarz (SCP-Kaczmarz) method is proposed to reconstruct the fluorescent target for FMT. The SCP-Kaczmarz method uses the preconditioning strategy to minimize the correlation between the rows of the forward matrix and constrains the Kaczmarz iteration results to be sparse. Numerical simulation and phantom and in vivo experiments were performed to test the efficiency of the proposed method. The results demonstrate that both the convergence and accuracy of the proposed method are improved compared with the classical memory-efficient low-cost Kaczmarz method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app