Add like
Add dislike
Add to saved papers

Advancing targeted co-stimulation with antibody-fusion proteins by introducing TNF superfamily members in a single-chain format.

Co-stimulation via receptors of the tumor necrosis factor superfamily (TNFSF) emerges as promising strategy to support antitumor immune responses. Targeted strategies with antibody-fusion proteins composed of a tumor-directed antibody part and the extracellular domain of a co-stimulatory ligand of the TNFSF constitute an attractive option to focus the co-stimulatory activity to the tumor site. Since TNFSF members intrinsically form functional units of non-covalently linked homotrimers, the protein engineering of suitable antibody-fusion proteins is challenging. Aiming for molecules of simple and stable configuration, we used TNFSF ligands in a single-chain format (scTNFSF), i.e., three units of the ectodomain connected by polypeptide linkers, folding into an intramolecular trimer. By fusing tumor-directed scFv antibody fragments directed against EpCAM or FAP to co-stimulatory scTNFSF molecules (sc4-1BBL, scOX40L, scGITRL or scLIGHT), a set of monomeric scFv-scTNFSF fusion proteins was generated. In comparison to the scFv-TNFSF format, defined by intermolecular homotrimerization via the TNFSF part, scFv-scTNFSF showed equal or enhanced co-stimulatory activity despite reduced avidity in antibody binding. In addition, enhanced serum stability and improved bioavailability in mice were observed. We show that the scFv-scTNFSF format can be applied to various members of the TNFSF, presenting targeting-dependent co-stimulatory activity. Hence, this format exhibits favorable properties that make it a promising choice for further therapeutic fusion protein development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app