Add like
Add dislike
Add to saved papers

Resting and Activated Natural Tregs Decrease in the Peripheral Blood of Patients with Atherosclerosis.

BACKGROUND: Atherosclerosis is a chronic inflammatory disease affecting large and medium arteries. CD4+ T cells are known to play a role in the progression of the disease. CD4+CD25+Foxp3+ natural Treg (nTreg) cells seem to have a protective role in the disease and their reduction in acute coronary syndrome is recently shown.

OBJECTIVE: To investigate the frequency of nTreg subsets in the peripheral blood of patients with atherosclerosis.

METHODS: Confirmation of atherosclerosis was done by angiography and 15 ml heparinized blood was obtained from each of the 13 non-diabetic patients and 13 non-diabetic, non-smoker individuals with normal/insignificant coronary artery disease confirmed by angiography. Lipid profiles of the patients and controls were measured at the time of sampling. Mononuclear cells were used for both RNA extraction and immunophenotyping by real-time PCR and flowcytometry techniques, respectively.

RESULTS: In natural Treg subsets, the frequency of CD4+CD45RO-CD25+Foxp3lo T-cells (resting nTregs) was greater in controls than patients (p=0.02). The frequency of CD4+CD45RO+CD25hiFoxp3hi T-cells (activated nTregs) was significantly higher in controls compared with patients (p=0.02). However, the frequency of CD4+CD25+CD45RO+Foxp3- T-cells (effector/memory T-cell) increased in patients compared with controls (p=0.01). Both the MFI and gene expression of Foxp3 were higher in control group than in patients (p=0.015 and p=0.017, respectively). Moreover, the TGF-β gene expression showed a decrease in the peripheral blood mononuclear cells of patients compared with controls (p=0.03).

CONCLUSION: Decrease in both subsets of resting and activated nTregs along with a decrease in the expression of Foxp3 and TGF-β genes in patients with atherosclerosis suggests phenotypic changes in these subsets, which may as well be correlated with a more inflammatory profile in their lymphocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app