JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Regulation of bone growth via ligand-specific activation of estrogen receptor alpha.

Estrogens are well known for their capacity to promote bone maturation and at high doses to induce growth plate closure and thereby stop further growth. High-dose estrogen treatment has therefore been used to limit growth in extremely tall girls. However, recent data suggest that this treatment may have severe side effects, including increased risk of cancer and reduced fertility. We hypothesized that estrogenic effects in bone are mediated via ERα signaling. Twelve-week-old ovariectomized female C57BL/6 mice were subcutaneously injected for 4 weeks with E2 or selective ERα (PPT) or ERβ (DPN) agonists. After killing, tibia and femur lengths were measured, and growth plate morphology was analyzed. E2- and PPT-treated mice had shorter tibiae and femur bones when compared to vehicle-treated controls, whereas animals treated with DPN had similar bone lengths compared to controls. Growth plate height and hypertrophic zone height were reduced in animals treated with E2 or PPT but not in those treated with DPN, supporting that the effect was mediated via ERα. Moreover, PCNA staining revealed suppressed proliferation of chondrocytes in the tibia growth plate in PPT- or E2-treated mice compared to controls. Our data show that estrogenic effects on bone growth and growth plate maturation are mainly mediated via ERα. Our findings may have direct implications for the development of new and more selective treatment modalities of extreme tall stature using selective estrogen receptor modulators that may have low side effects than high-dose E2 treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app