Add like
Add dislike
Add to saved papers

The extracellular isoform of superoxide dismutase has a significant impact on cardiovascular ischaemia and reperfusion injury during cardiopulmonary bypass.

OBJECTIVES: Cardiac surgery with cardiopulmonary bypass (CPB) provokes ischaemia and reperfusion injury (IRI). Superoxide is a main mediator of IRI and is detoxified by superoxide dismutases (SODs). Extracellular SOD (SOD3) is the prevailing isoform in the cardiovascular system. Its mutation is associated with elevated risk for ischaemic heart disease as epidemiological and experimental studies suggest. We investigated the influence of SOD3 on IRI in the context of CPB and hypothesized a protective role for this enzyme.

METHODS: Mutant rats with loss of SOD3 function induced by amino acid shift, SOD3-E124D, (SOD3 mutant; n = 9) were examined in a model of CPB with deep hypothermic circulatory arrest provoking global IRI and compared with SOD3 competent controls (n = 8) as well as sham animals (n = 7). SOD3 plasma activity was photometrically measured with a diazo dye-forming reagent. Activation of cardioprotective rescue pathways (p44-42 MAPK and STAT3), cleavage of PARP-1, expression of SOD isoforms (SOD1, 2 and 3) and nitric oxide metabolism were analysed on the protein level by western blot. To evaluate whether SOD3 inactivity directly affects the myocardium, we isolated adult cardiac myocytes, which underwent hypoxia prior to protein analyses.

RESULTS: Relative SOD3 plasma activity in SOD3 mutant rats was significantly decreased by at least 50% compared with that in SOD3 competent controls (prior to euthanasia P = 0.008). Effectively, physiological parameters [heart rate and mean arterial pressure (MAP)] indicated a trend toward impaired handling of ischaemia and reperfusion in SOD3 mutants: after reperfusion, mean heart rate was 46 bpm lower (P = 0.083) and MAP 8 mmHg lower (P = 0.288) than that in SOD competent controls. Decreased SOD3 activity led to reduced activation of cardioprotective rescue pathways in vivo and in vitro: relative activation of p44-42 MAPK (P = 0.074) and STAT3 (P = 0.027) was more than 30% decreased in heart and aortic tissue of SOD3 mutants (activity normalized to sham control as 1). After CPB, cleavage of PARP-1 was doubled in the control group (P = 0.017), but increased 3-fold in SOD3 mutants (P = 0.002). Furthermore, 3-nitrotyrosine as a measure of decreased nitric oxide bioavailability and other SOD isoforms (SOD1 and 2) were increased.

CONCLUSIONS: Collectively, SOD3 has a significant cardioprotective role in cases of IRI and directly affects the myocardium as hypothesized. Exploration of intervention strategies targeting SOD3 may provide therapeutic options against IRI and associated systemic inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app