JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Generation, Endothelialization, and Microsurgical Suture Anastomosis of Strong 1-mm-Diameter Collagen Tubes.

Tissue-engineered vascular grafts that are based on reconstituted extracellular matrices have been plagued by weak mechanical strength that prevents handling or anastomosis to native vessels. In this study, we devise a method for making dense, suturable collagen tubular constructs of diameter ≤1 mm for potential microsurgical applications, by dehydrating tubes of native rat tail type I collagen and crosslinking them with 20 mM genipin. Crosslinked dense collagen tubes with 1 mm inner diameter yielded ultimate tensile strength of 342 ± 15 gF and burst pressure of 1313 ± 156 mm Hg, comparable to the strength of a rat femoral artery, and supported endothelial cell adhesion and growth. End-to-end anastomosis of 0.5-mm-diameter tubes to explanted arteries displayed anastomotic strength of 82 ± 21 gF, which is sufficient for surgical applications. In vivo implantation of cell-free tubes as interpositional grafts in the rat femoral circulation yielded stable anastomosis with blood flow for 20 min. Seeded dense collagen tubes represent a promising alternative to venous graft that can potentially be used to bridge between short artery stubs in replantation surgeries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app