Add like
Add dislike
Add to saved papers

Anticancer Effect of α-Tocopheryl Succinate Delivered by Mitochondria-Targeted Mesoporous Silica Nanoparticles.

Mitochondria targeted mesoporous silica nanoparticles (MSNPs) having an average diameter of 68 nm were fabricated and then loaded with hydrophobic anticancer agent α-tocopheryl succinate (α-TOS). The property of targeting mitochondria was achieved by the surface functionalization of triphenylphosphonium (TPP) on MSNPs, since TPP is an effective mitochondria-targeting ligand. Intracellular uptake and mitochondria targeting of fabricated MSNPs were evaluated in HeLa and HepG2 cancerous cell lines as well as HEK293 normal cell line. In addition, various biological assays were conducted with the aim to investigate the effectiveness of α-TOS delivered by the functional MSNPs, including studies of cytotoxicity, mitochondria membrane potential, intracellular adenosine triphosphate (ATP) production, and apoptosis. On the basis of these experiments, high anticancer efficiency of α-TOS delivered by mitochondria targeted MSNPs was demonstrated, indicating a promising application potential of MSNP-based platform in mitochondria targeted delivery of anticancer agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app