Add like
Add dislike
Add to saved papers

Spatial Models of Sewer Pipe Leakage Predict the Occurrence of Wastewater Indicators in Shallow Urban Groundwater.

Twentieth century municipal wastewater infrastructure greatly improved U.S. urban public health and water quality. However, sewer pipes deteriorate, and their accumulated structural defects may release untreated wastewater to the environment via acute breaks or insidious exfiltration. Exfiltrated wastewater constitutes a loss of potentially reusable water and delivers a complex and variable mix of contaminants to urban shallow groundwater. Yet, predicting where deteriorated sewers impinge on shallow groundwater has been challenging. Here we develop and test a spatially explicit model of exfiltration probability based on pipe attributes and groundwater elevation without prior knowledge of exfiltrating defect locations. We find that models of exfiltration probability can predict the probable occurrence in underlying shallow groundwater of established wastewater indicators including the artificial sweetener acesulfame, tryptophan-like fluorescent dissolved organic matter, nitrate, and a stable isotope of water (δ18 O). The strength of the association between exfiltration probability and indicators of wastewater increased when multiple pipe attributes, distance weighting, and groundwater flow direction were considered in the model. The results prove that available sanitary sewer databases and groundwater digital elevation data can be analyzed to predict where pipes are likely leaking and contaminating groundwater. Such understanding could direct sewer infrastructure reinvestment toward water resource protection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app