Add like
Add dislike
Add to saved papers

Molecular interactions of dioxins and DLCs with the ketosteroid receptors: an in silico risk assessment approach.

Dioxins and dioxin-like compounds (DLCs) are the ones with poor water solubility and low volatility, resistant to physical, chemical and biological processes, persistent in the environment even under extreme conditions. Due to lipophilic nature, they get adhered to the fatty material and concentrate through biomagnification and bioaccumulation, thereby easily getting incorporated into food chains, paving the way to endocrine disruption via modulation of various human receptors. This in turn leads to certain adverse health effects. In the present study, a total of 100 dioxins and DLCs were taken and their binding pattern was assessed with the ketosteroid receptors, i.e. androgen (hAR), glucocorticoid (hGR), progesterone (hPR) and mineralocorticoid (hMR) in comparison to the corresponding natural steroids and a known endocrine disrupting xenobiotic, Bisphenol A (BPA). Most of the DLCs, particularly those bearing hydroxyl (-OH) group showed considerable affinities with ketosteroid receptors. On comparing D scores of all the dioxins and DLCs against all four receptors, compound 8-hydroxy-3,4-dichlorodibenzofuran(8-OH-DCDF) exhibited least D score of -9.549 kcal mol(-1) against hAR. 3,8-Dihydroxy-2-chlorodibenzofuran(3,8-DiOH-CDF), 4'-hydroxy-2,3,4,5-tetrachlorobiphenyl (4'-OH-TCB) and 4-hydroxy-2,2',5'-trichlorobiphenyl(4-OH-TCB) also showed comparable molecular interactions with the ketosteroid receptors. These interactions mainly include H-bonding, π-π stacking, hydrophobic, polar and van der Waals' interactions. In contrast, BPA and some natural ligands tested in this study showed lower binding affinities with these receptors than certain DLCs reported herein, i.e. certain DLCs might be more toxic than the proven toxic agent, BPA. Such studies play a pivotal role in the risk assessment of exposure to dioxins and DLCs on human health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app