Letter
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Alternative Route to Silicene Synthesis via Surface Reconstruction on h-MoSi2 Crystallites.

Nano Letters 2017 January 12
Silicene is a two-dimensional material with a Dirac-type band structure and it is particularly attractive due to its potential for integration with Si-based technology. The primary focus has been to grow single silicene layers and understand how the electronic structure is affected by the substrate and the phase transition between low- and high-buckling configurations. Typically, silicene is synthesized by depositing monolayer amounts of silicon onto a heated Ag(111) surface; however, other growth substrates such as Ir(111) and ZrB2 have been studied recently. We present a novel route for silicene synthesis via a high-temperature surface reconstruction of hexagonal-MoSi2 nanocrystallites. The h-MoSi2 crystallites are formed by annealing of thin Mo-layers on Si(100)-(2 × 1) and their crystallographic orientation is controlled via an epitaxial relation with the Si-substrate. The (0001) plane of h-MoSi2 is comprised of Si-hexagons with a Mo atom residing in the center. Annealing above approximately 650 °C causes the (0001) plane to undergo a surface reconstruction process leaving a honeycomb pattern on the surface of these crystallites as shown by scanning tunneling microscopy. We define this surface layer as a silicene-like reconstruction (SLR), and a detailed geometric analysis of our structure yields a perfect match with the (√3 × √3)R30° silicene superstructure in a low-buckled configuration (ABA̅). Scanning tunneling spectroscopy data of the SLR, Si(001)-(2 × 1) and h-MoSi2 surfaces agree with this interpretation. The formation of this structure on a transition metal silicide opens up the opportunity for integration into Si-based devices without the necessity for a transfer scheme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app