Add like
Add dislike
Add to saved papers

Chaperone-like Activity of Calnuc Prevents Amyloid Aggregation.

Biochemistry 2017 January 11
Calnuc is a ubiquitously expressed protein of the EF-hand Ca(2+)-binding superfamily. Previous studies have implicated it in Ca(2+)-sensitive physiological processes, whereas details of its function and involvement in human diseases are lacking. Drawing upon the sequence homology of calnuc with calreticulin, we propose it functions as a molecular chaperone-like protein. In cells under thermal, chemical [urea and guanidinium chloride (GdmCl)], and acidic stress, calnuc exhibits properties similar to those of established chaperone-like proteins (GRP78, spectrin, and α-crystallin), effectively demonstrated by its ability to suppress aggregation of malate dehydrogenase (MDH), alcohol dehydrogenase, and catalase. Calnuc aids in refolding of MDH with retention of 80% of its enzymatic activity. In HEK293 cells subjected to heat shock, calnuc chaperones luciferase, protecting its activity. Our in vitro and cell culture results establish the ability of calnuc to inhibit fibrillation of insulin and lysozyme and validate its neuroprotective role in cells treated with amyloid fibrils. Calnuc also rescues cells from fibrillar toxicity (caused by misfolded or aggregated proteins), providing a plausible explanation for the previous observation of its low level of expression in brains affected by Alzheimer's disease. We propose that calnuc is possibly involved in controlling protein unfolding diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), prion disease, and type II diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app