Add like
Add dislike
Add to saved papers

Structure-Band Gap Relationships in Hexagonal Polytypes and Low-Dimensional Structures of Hybrid Tin Iodide Perovskites.

Inorganic Chemistry 2017 January 4
The present study deals with the structural characterization and classification of the novel compounds 1-8 into perovskite subclasses and proceeds in extracting the structure-band gap relationships between them. The compounds were obtained from the employment of small, 3-5-atom-wide organic ammonium ions seeking to discover new perovskite-like compounds. The compounds reported here adopt unique or rare structure types akin to the prototype structure perovskite. When trimethylammonium (TMA) was employed, we obtained TMASnI3 (1), which is our reference compound for a "perovskitoid" structure of face-sharing octahedra. The compounds EASnI3 (2b), GASnI3 (3a), ACASnI3 (4), and IMSnI3 (5) obtained from the use of ethylammonium (EA), guanidinium (GA), acetamidinium (ACA), and imidazolium (IM) cations, respectively, represent the first entries of the so-called "hexagonal perovskite polytypes" in the hybrid halide perovskite library. The hexagonal perovskites define a new family of hybrid halide perovskites with a crystal structure that emerges from a blend of corner- and face-sharing octahedral connections in various proportions. The small organic cations can also stabilize a second structural type characterized by a crystal lattice with reduced dimensionality. These compounds include the two-dimensional (2D) perovskites GA2 SnI4 (3b) and IPA3 Sn2 I7 (6b) and the one-dimensional (1D) perovskite IPA3 SnI5 (6a). The known 2D perovskite BA2 MASn2 I7 (7) and the related all-inorganic 1D perovskite "RbSnF2 I" (8) have also been synthesized. All compounds have been identified as medium-to-wide-band-gap semiconductors in the range of Eg = 1.90-2.40 eV, with the band gap progressively decreasing with increased corner-sharing functionality and increased torsion angle in the octahedral connectivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app