Add like
Add dislike
Add to saved papers

Low-Molecular-Weight Hydrogels as New Supramolecular Materials for Bioelectrochemical Interfaces.

Controlling the interface between biological tissues and electrodes remains an important challenge for the development of implantable devices in terms of electroactivity, biocompatibility, and long-term stability. To engineer such a biocompatible interface a low molecular weight gel (LMWG) based on a glycosylated nucleoside fluorocarbon amphiphile (GNF) was employed for the first time to wrap gold electrodes via a noncovalent anchoring strategy, that is, self-assembly of GNF at the electrode surface. Scanning electron microscopy (SEM) studies indicate that the gold surface is coated with the GNF hydrogels. Electrochemical measurements using cyclic voltammetry (CV) clearly show that the electrode properties are not affected by the presence of the hydrogel. This coating layer of 1 to 2 μm does not significantly slow down the mass transport through the hydrogel. Voltammetry experiments with gel coated macroporous enzyme electrodes reveal that during continuous use their current is improved by 100% compared to the noncoated electrode. This demonstrates that the supramolecular hydrogel dramatically increases the stability of the bioelectrochemical interface. Therefore, such hybrid electrodes are promising candidates that will both offer the biocompatibility and stability needed for the development of more efficient biosensors and biofuel cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app