Add like
Add dislike
Add to saved papers

No effect of acute and chronic supramaximal exercise on circulating levels of the myokine SPARC.

Myokines may play a role in the health benefits of regular physical activity. Secreted protein acidic rich in cysteine (SPARC) is a pleiotropic myokine that has been shown to be released into the bloodstream by skeletal muscle in response to aerobic exercise. As there is evidence suggesting that SPARC release may be linked to glycogen breakdown and activation of 5' adenosine monophosphate-activated protein kinase, we hypothesised that brief supramaximal exercise may also be associated with increased serum SPARC levels. In the present study, 10 participants (3 women; mean ± SD age: 21 ± 3 y, body mass index (BMI): 22 ± 3 kg m(-2), and V˙O2max: 39 ± 6 mL kg(-1) min(-1)) performed an acute bout of supramaximal cycle exercise (20-s Wingate sprint against 7.5% of body mass, with a 1-min warm-up and a 3-min cool-down consisting of unloaded cycling). Serum SPARC levels were determined pre-exercise as well as 0, 15, and 60 min post-exercise and corrected for plasma volume change. To determine whether regular exercise affected the acute SPARC response, participants repeated the acute exercise protocol three times per week for four weeks, and serum SPARC response to supramaximal exercise was reassessed after this period. Acute supramaximal exercise significantly decreased plasma volume (-10%; p < .001), but was not associated with a significant change in serum SPARC levels at either the pre-training or post-training testing sessions. In conclusion, in contrast to aerobic exercise, a single brief supramaximal cycle sprint is not associated with an increase in serum SPARC levels, suggesting that SPARC release is not related to skeletal muscle glycogen breakdown.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app