Add like
Add dislike
Add to saved papers

The effects of di 2-ethyl hexyl phthalate (DEHP) on cellular lipid accumulation in HepG2 cells and its potential mechanisms in the molecular level.

Diethylhexyl phthalate (DEHP) is suspected to be an inevitable factor related to metabolic disease. Our previous study demonstrated that excess DEHP could exacerbate non-alcoholic fatty liver disease (NAFLD) in SD rats. Addressing the terra incognita in DEHP-induced metabolic dysfunction, this study used HepG2 cells to investigate the potential mechanisms involved in DEHP-induced toxicity in vitro. The cells were established lipid overload model with oleic acid and BSA, then exposed to different concentrations (5, 10, 25, 50, 100 μmol/l DEHP) of DEHP for further analysis. The Oil Red O staining results showed that DEHP could promote lipid accumulation in cells. The level of superoxide dismutase (SOD) and malondialdehyde (MDA) changed suggested the balance of oxidative stress was disrupted. Additionally, western blot analysis showed that DEHP could promote the expression of peroxisome proliferator-activated receptor α (PPARα) and sterol regulatory element-binding protein 1c (SREBP-1c). By quantifying the expressions of the two proteins, it is of interest to determine that DEHP could promote lipid accumulation in hepatocytes via activating the SREBP-1c and PPARα-signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app