Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ion-Specific Effects on the Elongation Dynamics of a Nanosized Water Droplet in Applied Electric Fields.

We report an all-atom molecular dynamics study of the structures and dynamics of salty water droplets on a silicon surface under the influence of applied electric field. Our simulation results support ion-specific effects on the elongation dynamics of salty nanodroplets, induced by the field. This feature has not been explored up to now in monovalent salts. Nevertheless, the importance of ion-specific effects is widely confirmed in biological and colloidal systems. In particular, the increase of salt concentration enhances the effect of the nature of ions on the wetting properties of droplets. In the presence of electric field (0.05 V Å(-1)), a complete spreading is implemented in a short time for different droplets at a concentration of 1 M, and the droplet morphology is stable, observed at long time scales. However, a higher salt concentration of 4 M considerably suppresses the spreading process owing to the increase of surface tension. It was found that the NaCl droplet shows deformation oscillations along the external field, but cannot fully wet the substrate surface. By contrast, the CsCl droplet reaches complete elongation rapidly and adopts a steady strip shape. The KCl droplet undergoes frequent transitions between breakup and connection. Additionally, the droplets can be elongated only when the electric field strength exceeds a threshold value. The dipole orientation of interfacial water and the ionic diffusion exhibit ion-specific dependences, but the hydrogen bond network is scarcely disturbed, excluding a concentration-dependent effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app