JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intracellular Chloride Concentration Changes Modulate IL-1β Expression and Secretion in Human Bronchial Epithelial Cultured Cells.

Cystic fibrosis (CF) is caused by mutations in the CFTR gene, which encodes a cAMP-regulated chloride channel. Several cellular functions are altered in CF cells. However, it is not clear how the CFTR failure induces those alterations. We have found previously several genes differentially expressed in CF cells, including c-Src, MUC1, MTND4, and CISD1 (CFTR-dependent genes). Recently, we also reported the existence of several chloride-dependent genes, among them GLRX5 and RPS27. Here, varying the intracellular chloride concentration [Cl- ]i of IB3-1 CF bronchial epithelial cells, we show that IL-1β mRNA expression and secretion are also under Cl- modulation. The response to Cl- is biphasic, with maximal effects at 75 mM Cl- . The regulation of the IL-1β mRNA expression involves an IL-1β autocrine effect, since in the presence of the IL-1β receptor antagonist IL1RN or anti-IL-1β blocking antibody, the mRNA response to Cl- disappeared. Similar effects were obtained with the JNK inhibitor SP600125, the c-Src inhibitor PP2 and the IKK inhibitor III (BMS-345541). On the other hand, the IL-1β secretion is still modulated by Cl- in the presence of IL-1RN, IL-1β blocking antibody, or cycloheximide, suggesting that Cl- is affecting the IL-1β maturation/secretion, which in turn starts an autocrine positive feedback loop. In conclusion, the Cl- anion acts as a second messenger for CFTR, modulating the IL-1β maturation/secretion. The results also imply that, depending on its intracellular concentration, Cl- could be a pro-inflammatory mediator. J. Cell. Biochem. 118: 2131-2140, 2017. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app