JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Estrogen-induced SDF-1α production promotes the progression of ER-negative breast cancer via the accumulation of MDSCs in the tumor microenvironment.

Scientific Reports 2016 December 21
Estrogen plays a role in the processes of tumorigenesis, metastasis, and drug resistance in estrogen receptor (ER)-positive breast cancer (BC). Whether estrogen contributes to ER-negative BC is unclear. Here, we aimed to investigate whether estrogen could stimulate the secretion of stromal-derived factor-1 (SDF-1α) by cancer-associated fibroblasts (CAFs) to promote the progression of ER-negative BC. We transplanted ER-negative BC cells into ovariectomized mice, which was followed by continuous injection of estrogen, and found that estrogen promoted the tumorigenesis of BC. Furthermore, High levels of SDF-1α and tumor-infiltrating myeloid-derived suppressor cells (MDSCs) were detected in the estrogen treatment group. Estrogen stimulates secretion of SDF-1α by CAFs extracted from BC patients. Recombinant SDF-1α could recruit MDSCs isolated from bone marrow cells of mice. In addition, the co-culture of CAFs and MDSCs demonstrated that the recruitment of MDSCs was increased when CAFs were exposed to estrogen. Using AMD3100 to block the SDF-1α/CXCR4 axis or gemcitabine to delete MDSCs, we observed that both of these agents could neutralize the effect of estrogen on tumorigenesis. Together, these results suggest that estrogen may promote the progression of ER-negative BC by stimulating CAFs to secrete SDF-1α, which can recruit MDSCs to the tumor microenvironment to exert tumor-promoting effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app