Add like
Add dislike
Add to saved papers

Nuclear migration during karyogamy in rice zygotes is mediated by continuous convergence of actin meshwork toward the egg nucleus.

Fertilization is comprised of two sequential fusion processes; plasmogamy and karyogamy. Karyogamy completes with migration and fusion of the male and female nuclei in the fused cell. In animals, microtubules organized by the centrosome control female/male pronuclei migration. In contrast, the nuclear migration in fused gametes of angiosperms is controlled by actin filaments, but the mechanism that regulates actin filament-dependent nuclear migration is not clear. In this study, we prepared fused rice (Oryza sativa L.) gametes/zygotes using in vitro fertilization and observed the spatial and temporal movements of actin filaments and sperm nuclei. Our results show that actin filaments in egg cells form a meshwork structure surrounding the nuclei. Quantitative analysis of the actin meshwork dynamics suggests that actin meshwork converges toward the egg nucleus. In egg cells fused with sperm cells, actin filaments appeared to interact with a portion of the sperm nuclear membrane. The velocity of the actin filaments was positively correlated with the velocity of the sperm nucleus during karyogamy. These results suggest that sperm nuclear membrane and actin filaments physically interact with each other during karyogamy, and that the sperm nucleus migrates toward the egg nucleus through the convergence of the actin meshwork. Interestingly, actin filament velocity increased promptly after gamete fusion and was further elevated during nuclear fusion. In addition to the migration of gamete nuclei, convergence of actin meshwork may also be critical during early zygotic developments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app