JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Piceatannol attenuates homocysteine-induced endoplasmic reticulum stress and endothelial cell damage via heme oxygenase-1 expression.

Amino Acids 2017 April
A growing body of evidence implicates endoplasmic reticulum (ER)-induced cellular dysfunction and apoptosis as important factors to a variety of diseases. In endothelial cells (ECs), the sulfur-containing amino acid homocysteine (Hcy) causes EC apoptosis and reactive oxygen species (ROS) generation through induction of ER stress. Here, we have investigated whether piceatannol (Pic), a resveratrol analog, could protect ECs against Hcy-induced apoptosis, oxidative stress and ER stress, with specific emphasis on heme oxygenase-1 (HO-1). In human ECs, we determined the effects of Hcy and Pic on annexin V positivity, glucose-regulated protein 78 kDa (GRP78) and C/EBP homologous protein (CHOP) expression, X-box binding protein 1 (Xbp-1) mRNA slicing, and ROS-sensitive dihydroethidium (DHE) oxidation. Hcy increased annexin V-positive cells, DHE oxidation, GRP78 and CHOP expression and Xbp-1 mRNA splicing, indicating that Hcy induces apoptosis, oxidative stress and ER stress. Pretreatment of ECs with Pic significantly inhibited Hcy-induced apoptosis, ROS generation and ER stress. Pic also increased HO-1 expression via activation of nuclear factor-E2-related factor 2 (Nrf2). Interestingly, the inhibitory effects of Pic on Hcy-induced apoptosis, ROS generation and ER stress were abolished by down-regulation of HO-1 expression, while mimicked by treatment of ECs with the HO-1 inducer hemin. Overall, these results suggest that Pic may protect ECs against Hcy-induced apoptosis, oxidative stress and ER stress via Nrf2-dependent HO-1 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app