JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modulation of PKA, PKC, CAMKII, ERK 1/2 pathways is involved in the acute antidepressant-like effect of (octylseleno)-xylofuranoside (OSX) in mice.

Psychopharmacology 2017 Februrary
RATIONALE: (Octylseleno)-xylofuranoside (OSX) is an organoselenium compound from the class of alkylseleno carbohydrates possessing a C8 alkyl chain. Members of this class of organoselenium compounds have promising pharmacological activities, among them are antioxidant and acute antidepressant-like activities with the involvement of monoaminergic system, as previously presented by our research group.

OBJECTIVE: The objective of the study was to investigate the possible involvement of cellular signalling pathways in the antidepressant-like effect caused by OSX (0.01 mg/kg, oral route (p.o.) by gavage) in the tail suspension test (TST) in mice.

METHODS: Mice were treated by intracerebroventricular (i.c.v.) injection either with vehicle or with H-89 (1 μg/site i.c.v., an inhibitor of protein kinase A-PKA), KN-62 (1 μg/site i.c.v., an inhibitor of Ca2+ /calmodulin-dependent protein kinase II-CAMKII), chelerythrine (1 μg/site i.c.v., an inhibitor of protein kinase C-PKC) or PD098059 (5 μg/site i.c.v., an inhibitor of extracellular-regulated protein kinase 1/2-ERK1/2 ). Fifteen minutes after, vehicle or OSX was injected, and 30 min later, the TST and open field tests (OFT) were carried out.

RESULTS: The antidepressant-like effect of orally administered OSX was blocked by treatment of the mice with H-89, KN-62, chelerythrine and PD098059; all inhibitors of signalling proteins involved with neurotrophic signalling pathways. The number of crossings in the OFT was not altered by treatment with OSX and/or signalling antagonists.

CONCLUSIONS: The results demonstrated that OSX showed an antidepressant-like effect in the TST in mice through the activation of protein kinases PKA, PKC, CAMKII and ERK1/2 that are involved in intracellular signalling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app