Add like
Add dislike
Add to saved papers

Application of 1-D discrete wavelet transform based compressed sensing matrices for speech compression.

BACKGROUND: Compressed sensing is a novel signal compression technique in which signal is compressed while sensing. The compressed signal is recovered with the only few numbers of observations compared to conventional Shannon-Nyquist sampling, and thus reduces the storage requirements. In this study, we have proposed the 1-D discrete wavelet transform (DWT) based sensing matrices for speech signal compression. The present study investigates the performance analysis of the different DWT based sensing matrices such as: Daubechies, Coiflets, Symlets, Battle, Beylkin and Vaidyanathan wavelet families.

RESULTS: First, we have proposed the Daubechies wavelet family based sensing matrices. The experimental result indicates that the db10 wavelet based sensing matrix exhibits the better performance compared to other Daubechies wavelet based sensing matrices. Second, we have proposed the Coiflets wavelet family based sensing matrices. The result shows that the coif5 wavelet based sensing matrix exhibits the best performance. Third, we have proposed the sensing matrices based on Symlets wavelet family. The result indicates that the sym9 wavelet based sensing matrix demonstrates the less reconstruction time and the less relative error, and thus exhibits the good performance compared to other Symlets wavelet based sensing matrices. Next, we have proposed the DWT based sensing matrices using the Battle, Beylkin and the Vaidyanathan wavelet families. The Beylkin wavelet based sensing matrix demonstrates the less reconstruction time and relative error, and thus exhibits the good performance compared to the Battle and the Vaidyanathan wavelet based sensing matrices. Further, an attempt was made to find out the best-proposed DWT based sensing matrix, and the result reveals that sym9 wavelet based sensing matrix shows the better performance among all other proposed matrices. Subsequently, the study demonstrates the performance analysis of the sym9 wavelet based sensing matrix and state-of-the-art random and deterministic sensing matrices.

CONCLUSIONS: The result reveals that the proposed sym9 wavelet matrix exhibits the better performance compared to state-of-the-art sensing matrices. Finally, speech quality is evaluated using the MOS, PESQ and the information based measures. The test result confirms that the proposed sym9 wavelet based sensing matrix shows the better MOS and PESQ score indicating the good quality of speech.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app